В каких четвертях косинус положительный? В каких четвертях синус и косинус положительные?
Вопросы, возникающие при изучении тригонометрических функций, разнообразны. Некоторые из них – о том, в каких четвертях косинус положительный и отрицательный, в каких четвертях синус положительный и отрицательный. Все оказывается просто, если знаешь, как вычислить значение данных функций в разных углах и знаком с принципом построения функций на графике.
Какие значения косинуса
Если рассматривать прямоугольный треугольник, то мы имеем следующее соотношение сторон, которое его определяет: косинусом угла а является отношение прилегающего катета ВС к гипотенузе АВ (рис. 1): cos a = ВС/АВ.
С помощью этого же треугольника можно найти синус угла, тангенс и котангенс. Синусом будет соотношение противоположного к углу катета АС к гипотенузе АВ. Тангенс угла находится, если синус искомого угла разделить на косинус того же угла- подставив соответственные формулы нахождения синуса и косинуса, получим, что tg a = АС/ВС. Котангенс, как обратная к тангенсу функция, будет находиться так: ctg a = ВС/АС.
То есть, при одинаковых значениях угла обнаружилось, что в прямоугольном треугольнике соотношение сторон всегда одинаковое. Казалось бы, стало ясно, откуда эти значения, но почему получаются отрицательные числа?
Для этого нужно рассматривать треугольник в декартовой системе координат, где присутствуют как положительные, так и отрицательные значения.
Наглядно про четверти, где какая
Что такое декартовые координаты? Если говорить о двумерном пространстве, мы имеем две направленные прямые, которые пересекаются в точке О - это ось абсцисс (Ох) и ось ординат (Оу). От точки О в направлении прямой располагаются положительные числа, а в обратную сторону – отрицательные. От этого, в конечном итоге, напрямую зависит, в каких четвертях косинус положительный, а в каких, соответственно, отрицательный.
Первая четверть
Если разместить прямоугольный треугольник в первой четверти (от 0о до 90о), где ось х и у имеют положительные значения (отрезки АО и ВО лежат на осях там, где значения имеют знак "+"), то что синус, что косинус тоже будут иметь положительные значения, и им присвоено значение со знаком «плюс». Но что происходит, если переместить треугольник во вторую четверть (от 90о до 180о)?
Вторая четверть
Видим, что по оси у катет АО получил отрицательное значение. Косинус угла a теперь имеет в соотношении эту сторону с минусом, потому и итоговое его значение становится отрицательным. Выходит, что то, в какой четверти косинус положительный, зависит от размещения треугольника в системе декартовых координат. И в этом случае косинус угла получает отрицательное значение. А вот для синуса ничего не изменилось, ведь для определения его знака нужна сторона ОВ, которая осталась в данном случае со знаком плюс. Подведем итог по первым двум четвертям.
Чтобы выяснить, в каких четвертях косинус положительный, а в каких отрицательный (а также синус и другие тригонометрические функции), необходимо смотреть на то, какой знак присвоен тому или иному катету. Для косинуса угла a важен катет АО, для синуса – ОВ.
Первая четверть пока что стала единственной, отвечающей на вопрос: «В каких четвертях синус и косинус положительный одновременно?». Посмотрим далее, будут ли еще совпадения по знаку этих двух функций.
Во второй четверти катет АО стал иметь отрицательное значение, а значит и косинус стал отрицательным. Для синуса сохранено положительное значение.
Третья четверть
Теперь оба катета АО и ОВ стали отрицательными. Вспомним соотношения для косинуса и синуса:
Cos a = АО/АВ;
Sin a = ВО/АВ.
АВ всегда имеет положительный знак в данной системе координат, так как не направлена ни в одну из двух определённых осями сторон. А вот катеты стали отрицательными, а значит и результат для обоих функций тоже отрицательный, ведь если производить операции умножения или деления с числами, среди которых одно и только одно имеет знак «минус», то результат тоже будет с этим знаком.
Итог на данном этапе:
1) В какой четверти косинус положительный? В первой из трех.
2) В какой четверти синус положительный? В первой и второй из трёх.
Четвёртая четверть (от 270о до 360о)
Здесь катет АО вновь приобретает знак «плюс», а значит и косинус тоже.
Для синуса дела всё еще «отрицательны», ведь катет ОВ остался ниже начальной точки О.
Выводы
Для того чтобы понимать, в каких четвертях косинус положительный, отрицательный и т.д., нужно запомнить соотношение для вычисления косинуса: прилегающий к углу катет, деленный на гипотенузу. Некоторые учителя предлагают запомнить так: к(осинус) = (к) углу. Если запомнить этот «чит», то автоматически понимаешь, что синус – это отношение противоположного к углу катета к гипотенузе.
Запомнить, в каких четвертях косинус положительный, а в каких отрицательный, довольно сложно. Тригонометрических функций много, и все они имеют свои значения. Но все же, как итог: положительные значения для синуса – 1, 2 четверти (от 0о до 180о)- для косинуса 1, 4 четверти (от 0о до 90о и от 270о до 360о). В остальных четвертях функции имеют значения с минусом.
Возможно, кому-то будет легче запомнить, где какой знак, по изображению функции.
Для синуса видно, что от нуля до 180о гребень находится над линией значений sin(x), значит и функция здесь положительна. Для косинуса так же: в какой четверти косинус положительный (фото 7), а в какой отрицательный видно по перемещению линии над и под осью cos(x). Как итог, мы можем запомнить два способа определения знака функций синус, косинус:
1. По мнимому кругу с радиусом равным единице (хотя, на самом деле, не важно, какой радиус у круга, но в учебниках чаще всего приводят именно такой пример- это облегчает восприятие, но в то же время, если не оговориться, что это не суть важно, дети могут запутаться).
2. По изображению зависимости функции по (х) от самого аргумента х, как на последнем рисунке.
С помощью первого способа можно ПОНЯТЬ, от чего именно зависит знак, и мы подробно разъяснили это выше. Рисунок 7, построенный по этим данным, как нельзя лучше визуализирует полученную функцию и ее знакопринадлежность.
- Как нарисовать собаку поэтапно: мастер-класс
- Как нарисовать ворону - урок рисования
- Как найти мощность в различных ситуациях?
- Как рассчитывается показатель преломления
- Что такое условная вероятность и как ее правильно рассчитывать?
- Что такое окружность как геометрическая фигура: основные свойства и характеристики
- Сумма углов треугольника. Теорема о сумме углов треугольника
- Изучаем колебания – фаза колебаний
- Делители и кратные числа
- Высота пирамиды. Как ее найти?
- Перпендикулярные прямые и их свойства
- Что означает уклон в процентах, и как перевести его в градусы
- Треугольник равносторонний: свойства, признаки, площадь, периметр
- Тупоугольный треугольник: длина сторон, сумма углов. Описанный тупоугольный треугольник
- Правильный многоугольник. Число сторон правильного многоугольника
- Диагональ равнобокой трапеции. Чему равна средняя линия трапеции. Виды трапеций. Трапеция - это..
- Первый признак равенства треугольников. Второй и третий признаки равенства треугольников
- Выпуклые многоугольники. Определение выпуклого многоугольника. Диагонали выпуклого многоугольника
- Что такое треугольник. Какими они бывают
- Как находить высоту в равнобедренном треугольнике? Формула нахождения, свойства высоты в…
- У каких насекомых есть куколка? Виды, особенности развития